Characterisation of normed linear spaces with Mazur's intersection property
نویسندگان
چکیده
Normed linear spaces possessing the euclidean space property that every bounded closed convex set is an intersection of closed balls, are characterised as those with dual ball having weak * denting points norm dense in the unit sphere. A characterisation of Banach spaces whose duals have a corresponding intersection property is established. The question of the density of the strongly exposed points of the ball is examined for spaces with such properties.
منابع مشابه
The SECQ Linear Regularity and the Strong CHIP for In nite System of Closed Convex Sets in Normed Linear Spaces
We consider a nite or in nite family of closed convex sets with nonempty intersection in a normed space A property relating their epigraphs with their intersection s epigraph is studied and its relations to other constraint quali cations such as the linear regularity the strong CHIP and Jameson s G property are estab lished With suitable continuity assumption we show how this property can be en...
متن کاملA Theorem of the Hahn-banach Type for Linear Transformations
Every continuous linear functional defined on a vector subspace of a real normed space can be extended to the whole space so as to remain linear and continuous, and with the same norm(2). The extension of continuous linear transformations between two real normed spaces has been studied by several authors and for a long time it has been recognized that this problem has a close connection with th...
متن کاملThe SECQ, Linear Regularity, and the Strong CHIP for an Infinite System of Closed Convex Sets in Normed Linear Spaces
We consider a (finite or infinite) family of closed convex sets with nonempty intersection in a normed space. A property relating their epigraphs with their intersection’s epigraph is studied, and its relations to other constraint qualifications (such as the linear regularity, the strong CHIP, and Jameson’s (G)-property) are established. With suitable continuity assumption we show how this prop...
متن کاملA new view on fuzzy automata normed linear structure spaces
In this paper, the concept of fuzzy automata normed linear structure spaces is introduced and suitable examples are provided. ;The ;concepts of fuzzy automata $alpha$-open sphere, fuzzy automata $mathscr{N}$-locally compact spaces, fuzzy automata $mathscr{N}$-Hausdorff spaces are also discussed. Some properties related with to fuzzy automata normed linear structure spaces and fuzzy automata $ma...
متن کاملON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS
In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...
متن کامل